NOTE: All quoted texts are from Storz and Moriyama. (2008). Mechanisms of Hemoglobin Adaption to High Altitude Hypoxia. *High Altitude Medicine & Biology* 9: 148-157.

"One of the most celebrated case studies of high altitude adaptation involves a pair of distantly related waterfowl species, the bar-headed goose (*Anser indicus*) and the Andean goose (*Chloephaga melanoptera*), that have independently evolved exceptionally high Hb–O₂ affinities. The bar-headed goose spends the breeding season on high alpine lakes at 4000 to 6000 m on the Tibetan Plateau and spends the winter months in wetland habitats in different parts of the Indian subcontinent. This requires an annual round-trip migratory flight over the crest of the Himalaya at altitudes of nearly 10,000 m where ambient PO₂ is less than one-third of that at sea level. As might be expected for an animal capable of sustaining powered flight at such altitudes, the bar-headed goose is characterized by an exceptionally high Hb–O₂ affinity relative to its lowland sibling species, the greylag goose (*Anser anser*, P₅₀, the PO₂ at 50% saturation of Hb 29.7 vs. 39.5 torr at 37°C, pH 7.4). The observed difference in P₅₀ is attributable to a small difference in the intrinsic Hb–O₂ affinity..."

1. Draw a single graph of theta vs. PO₂ (torr = mmHg), which contains expected oxygen binding curves to (i) bar-headed goose hemoglobin and (ii) graylag goose hemoglobin.

2. The difference between the oxygen affinities of the hemoglobins of these geese "is attributable to a small difference in the intrinsic Hb-O₂ affinity". If only the intrinsic affinity of oxygen is different between the geese hemoglobins, fill in each blank with "<", ">", or "=" for the parameters of the MWC model. [NOTE: K_{site} parameters are association equilibrium constants.]

$$\begin{split} K^{T}_{site}(bar-headed) & K^{T}_{site}(graylag) \\ K^{R}_{site}(bar-headed) & K^{R}_{site}(graylag) \\ K^{T \to R}_{o}(bar-headed) & K^{T \to R}_{o}(graylag) \end{split}$$

Imagine that the curve on the Hill plot below is for the bar-headed goose hemoglobin. Using the relative values of the parameters of the MWC that you indicated above, add a curve for the graylag goose hemoglobin.

"In principle, substitutions at any one of these [DPG] binding sites can alter the sensitivity of Hb to the various allosteric effectors [i.e., DPG], thereby altering the equilibrium between the T- and R-state quaternary structures. Since the binding of allosteric effectors [i.e., DPG] typically stabilizes T-state deoxyHb, amino acid substitutions that inhibit effector binding will typically increase Hb–O₂ affinity by shifting the equilibrium in favor of R-state oxyHb."

"The relatively high Hb–O₂ affinity of Andean camelids (i.e., llama, vicuña, alpaca, and guanaco) is attributable to a His \rightarrow Asn substitution that eliminates two of the seven DPG-binding sites per tetramer."

"The suppression of DPG binding that accounts for the high Hb–O₂ affinity of Andean camelids also accounts for the high O₂-binding affinity of human fetal Hb (HbF). The γ -chain subunits of HbF are encoded by the γ -globin gene, which is distinguished from the adult β -globin gene by the substitution His \rightarrow Ser at key DPG-binding sites. The increased affinity of HbF relative to adult Hb is advantageous, because it facilitates placental O₂ transfer from the maternal circulation to the fetal circulation." 3. Draw a single graph of theta vs. PO_2 , which contains expected oxygen binding curves to (*i*) adult hemoglobin and (*ii*) fetal hemoglobin.

4. Fill in each blank with "<", ">", or "=" for the parameters of the MWC model. [NOTE: K_{site} parameters are association equilibrium constants.]

$$K_{site}^{T}(adult) \underbrace{K_{site}^{T}(fetal)}_{K_{site}^{R}(adult)} \underbrace{K_{site}^{R}(fetal)}_{K_{o}^{T \to R}(adult)} \underbrace{K_{o}^{T \to R}(fetal)}_{K_{o}^{T \to R}(fetal)}$$

Imagine that the curve on the Hill plot below is for adult hemoglobin. Using the relative values of the parameters of the MWC that you indicated above, add a curve for fetal hemoglobin.

5. Fill in each blank with "<", ">", or "=" to compare the dissociation equilibrium binding constant (K_D) of the hemoglobin effector molecule DPG:

$$K_{D}^{DPG}(non - Andean \ camelid) \underbrace{K_{D}^{DPG}(Andean \ camelid)}_{K_{D}^{DPG}(adult) \underbrace{K_{D}^{DPG}(fetal)}$$

The chemical structure of DPG is below. Explain the molecular basis for the observation that the His \rightarrow Asn and His \rightarrow Ser found in Andean camelids and fetal hemoglobins, respectively, suppresses DPG binding.

